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Abstract

A simple technique to reduce the execution time of genetic algorithms (GAs) is
to divide the task of evaluating the population among several processors. This class
of algorithms is called “global” parallel GAs because selection and mating consider
the entire population. Global parallel GAs are usually implemented as master-slave
programs and require constant interprocessor communication. This will affect their
performance, but most investigations of these algorithms ignore the penalty caused by
communications. This paper presents an analysis of the execution time of global parallel
GAs that includes a simple model of the time used in communications and shows that
there is an optimal number of processors that minimizes the execution time. To further
reduce the execution time we recommend the use of hybrids that combine global and
coarse-grained parallel GAs.

1 Introduction

A simple technique to parallelize genetic algorithms is to divide the task of evaluating the
population among several processors. In this technique selection and mating are global
(i.e., they consider all the individuals in the population) and the resulting algorithm is
called a “global” parallel GA. Global parallel GAs explore the search space in exactly the
same manner as a serial GA and are very easy to implement. However, there has been
little theoretical analysis to study the advantages that this method offers. The objective of
this paper is to quantify the reduction in the execution time and to identify the necessary
conditions for an improvement in performance.

The execution time of global parallel GAs has two major components: the time used in
computations and the time used to communicate information among processors. In turn,
the computation time is largely determined by the size of the population (Goldberg & Deb,
1991) so at first it seems that to improve performance we should reduce the population.
However, the population size is also a major factor in the effectiveness of GAs and if the
population is reduced then the probability that the GA will find good solutions would
decrease (Goldberg, Deb, & Clark, 1992; Harik, Canti-Paz, Goldberg, & Miller, 1997).
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Figure 1: A schematic of a global parallel GA.

Global parallel GAs are usually implemented as master-slave programs. The time used
in communications depends directly on the number of slave processors and on the particular
hardware used to execute the algorithm. The analysis in this paper assumes a simple but
realistic model for the communications time and it shows that there is an optimal number
of processors that minimizes the execution time of the global parallel GA.

The next section of the paper presents background material on global parallel GAs.
Section 3 gives a theoretical analysis of their performance that results in guidelines for the
design of efficient master-slave GAs. Section 4 shows the results from computational experi-
ments that validate the theory. In section 5 the discussion turns to a method that combines
global and coarse-grained parallel GAs that promises a greater improvement in performance
than any of the two basic parallel methods alone. Finally, we present a summary with the
conclusions of this study.

2 Global parallel genetic algorithms

Many parallel programs are based on a divide-and-conquer principle that principle can
be applied to GAs in several ways. Indeed, the literature contains numerous examples of
different methods to parallelize GAs. This paper concentrates on global parallel genetic
algorithms that use one population and divide the task of evaluating the population among
several processors. Another popular method of parallelization is coarse-grained parallel GAs
which divide the population and execute a conventional GA on each of the subpopulations.
Another method that also divides the population is fine-grained parallel GAs, but in this
case the subpopulations are much smaller than in the coarse-grained algorithm. It is also
possible to combine these methods to produce hybrid parallel GAs and, as we shall see in a
later section of this paper, they promise greater improvements in performance. A complete
review of the different methods of parallelization can be found elsewhere (Canti-Paz, 1997).

It is important to emphasize that while the global parallelization method does not
affect the behavior of the algorithm, the other methods introduce fundamental changes in
the way the GA works. For example, in the global method the selection mechanism takes
into account the entire population, but in the other methods selection is performed over
a subset of individuals (the deme). Also, it is possible to mate with any individual in the
global GA, but in the methods that divide the population mating is restricted to the deme.

In global parallel GAs the most common operation that is parallelized is the evaluation
of the individuals, because the fitness of an individual is independent from the rest of the
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population and there is no need to communicate during this phase. The evaluation of
individuals is parallelized by assigning a fraction of the population to each of the processors
used. Communication occurs only as each processor receives a subset of individuals to
evaluate and when the processors return the fitness values.

If the algorithm stops and waits to receive the fitness values for all the population before
proceeding into the next generation, then the global parallel GA is called synchronous and
it has exactly the same properties as a simple GA, with a possibility of better performance
being the only difference. However, it is also possible to implement an asynchronous
global GA where the algorithm does not stop to wait for any slow processors, but it does
not work exactly like a simple GA (it resembles a GA with a generation gap). Most global
parallel GA implementations are synchronous and in the rest of the paper we assume that
global parallel GAs do the exact same search as simple GAs.

The idea of global parallelization is not new. Actually, it has been around for quite some
time. For example Bethke (1976) described parallel implementations of a conventional GA
and of a GA with a generation gap and showed a very detailed analysis of the efficiency of
the use of the processing capacity. His analysis showed that global parallel GAs have an
efficiency close to 100%, but his analysis ignores the overhead of communications.

Another early study on global parallel GAs was made by Grefenstette (1981). He pro-
posed four prototypes for parallel GAs. The first prototype is a global parallel GA where
there is a “master” processor that does selection and applies crossover and mutation. The
individuals are sent to “slave” processors to be evaluated and return to the master at the end
of every generation. The second prototype is very similar to the first, but there is no clear
division between generations, when any slave processor finishes evaluating an individual it
returns it to the master and receives another individual. This scheme is an asynchronous
global GA and can maintain a high level of processor utilization, even if the slave processors
operate at different speeds. The third prototype is also a global GA, but in this case the
population is stored in shared memory which can be accessed by the slaves independently
of each other.

Grefenstette’s fourth prototype is a coarse-grained parallel GA where the best individ-
uals are broadcast every generation to all the other processors. The complexity of coarse-
grained parallel GAs was evident from this early proposal and Grefenstette raised several
“interesting questions” about the frequency of migration, the destination of the migrants
(topology), and the effect of migration on preventing premature convergence.

Grefenstette also hinted at the possibility of combining the fourth prototype with any
of the other three, creating a hybrid parallel GA. In section 5 we explore this possibility in
more detail.

The global parallelization method does not require a particular computer architecture,
and it can be implemented efficiently on shared- and distributed-memory computers. On a
shared-memory multiprocessor, the population can be stored in shared memory and each
processor could read a fraction of the population and write back the evaluation results
without any conflicts'. The number of individuals assigned to any processor can be constant,
but in some cases (like in a multiuser environment where the utilization of processors is

"We mean that there are no conflicts with other processors to access the same memory locations and
thus no synchronization is required in this step, but there may be conflicts in the interconnection network
that may slow the algorithm.
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variable) it may be necessary to balance the computational load among the processors
using a dynamic scheduling algorithm (e.g., guided self-scheduling).

On a distributed-memory computer, the population is stored in one processor. This
“master” processor is be responsible for sending the individuals to the other processors
(the “slaves”) for evaluation, collecting the results, and applying the genetic operators to
produce the next generation. The difference with a shared-memory implementation is that
the master has to send and receive messages explicitly. The time used in communications
is similar in both cases and the discussion that follows assumes that the global parallel GA
is implemented as a master-slave program on a distributed-memory machine.

An example of global parallelization on a distributed-memory architecture is the work
of Fogarty and Huang (1991). Their goal was to evolve a set of rules for a pole balancing
application which takes a considerable time to simulate. They used a network of transputers
which are microprocessors designed specifically for parallel computations. A transputer can
connect directly to only four transputers, and when there is a need to communicate with
another node in the network, all the intermediate transputers must receive and retransmit
the message. This causes an overhead in communications and to try to minimize it Fogarty
and Huang connected the transputers in different topologies, but they concluded that the
configuration of the network did not make a significant difference. They obtained reasonable
speedups and identified the fast-growing communication overhead as an impediment for
further improvements in speed.

Abramson and Abela (1992) implemented a GA on a shared-memory computer (an
Encore Multimax with 16 processors) to search for efficient timetables for schools. They
reported limited speedups, and blamed a few sections of serial code on the critical path of the
program for the results. Later, Abramson, Mills, and Perkins (1993) added a distributed-
memory machine (a Fujitsu AP1000 with 128 processors) to the experiments, changed the
application to train timetables, and modified the code. This time, they reported significant
(and almost identical) speedups for up to 16 processors on the two computers, but the
speedups degraded significantly as more processors were used, mainly due to the increase
in communications.

Another implementation of a global GA was the work by Hauser and Ménner (1994).
They used three different parallel computers, but only got good speedups on a NERV
multiprocessor (speedup of 5 using 6 processors), that has a very low communications
overhead. They explained that they did not get good speedups on the other systems they
used (a SparcServer and a KSR1) because they did not have complete control over the
scheduling of computation threads to processors and the system sometimes made inadequate
decisions.

Besides the evaluation of individuals, other aspect of GAs that can be parallelized is
the application of the search operators. For example, recombination and mutation could be
parallelized using the same idea of partitioning the population and distributing the work
among multiple processors. However, these operators are so simple that it is very likely that
the time required to send individuals back and forth would offset any performance gains.

The communication overhead is also a problem when selection is parallelized because
several forms of selection need information about the entire population and thus require
some communication. Recently, Branke, Andersen, and Schmeck (1997) parallelized differ-
ent types of global selection on a 2-D grid of processors and showed that their algorithms

www.manaraa.com



1 generation

Tc Tc Tc idle Tc Tc Tc ,Tc Tc Tc
| I I I I I I | I I I
| I I I 1 1 1 | I I 1
L —— e —
I e —
e
Tcomp idle

Figure 2: A schematic the execution of a global parallel GA.

are optimal for the topology of the interconnection network of the computer that they used
(their algorithms require O(y/n) time steps on a v/n x y/n grid).

In conclusion, global parallel GAs are easy to implement and seem to be a very efficient
method of parallelization when the evaluation needs considerable computations. In the next
section we formalize this notion and examine how the overhead from the communications
affects the performance of this type of algorithms.

3 Analysis

The analysis of the execution time of global parallel GAs centers on the master processor.
Figure 2 shows a timeline with the sequence of steps taken by the master. First, on each
generation the master sends a fraction of the population to each of the slave processors using
time T, and waits for the results to come back from the slaves. The slaves begin evaluating
their portion of the population as soon as they receive it and return it to the master as soon
as they finish. When the results are ready the master receives them, using time 7. again.
At the end of each cycle the master selects the parents for the next generation and creates
the new individuals using crossover and mutation. The time used in these operations is
assumed to be small constant and for this reason its contribution to the total execution
time is ignored in this section.

The time that the master processor is idle can be computed by taking the difference
between the time when the first slave completes its task (7, + Tcomp) and the time when
the master finishes sending the population to the slaves (ST.). Simplifying terms the idle
time for the master is

idle = Togmp — (S — 1)T.. (1)

where Tiomp is the time used by each slave to evaluate its part of the population and S is
the number of slave processors.

Since the population is divided into equally-sized parts among the slaves, the time that
they spend in computation is simply
no
Tcomp = ?a (2)

where « is the time required to evaluate one individual and n is the size of the population.
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Now we can compute the the total execution time of the master processor as

Tyor = 28T, + idle = % + (S +1)T.. (3)

From this equation for the total time, it is evident that as more slaves are used the
computation time decreases, but at the same time, the communications time increases. This
tradeoff entails the existence of an optimal number of slaves that minimizes the execution
time. Making % = (0 and solving for S results in

no
o= 4
S T (4)

However, this last equation assumes that T, is constant with respect to the number
of slaves. More often the cost of exchanging information between two processors depends
linearly on the amount of information, and in our case the amount of information depends
on the number of slaves. Therefore a better expression for T, is

T, = Asize + C, (5)

where A and C are hardware-dependent constants. C is a fixed overhead cost associated
with any communication and in our case size = nl/S is the size of the n/S individuals sent
to each slave when each individual is represented with [ bytes.

Using this linear model for the communications time also results in a tradeoff and the
optimal number of slaves can be computed in the same manner as before resulting in

§* = @. (6)

An important consideration in implementing global parallel GAs is that the frequent
communication may offset any gains in computation time. The time that a simple GA uses
in one generation is Ty = na and to ensure that the parallel implementation has a better
performance than a simple GA the following relationship must hold:

T, no

—_— = > 1. 7

Ttot % + (S + 1)Tc ( )
This ratio is the parallel speedup of the global parallel GA. Solving for « results in a

necessary condition for better performance in the parallel case:

S+18 S

/ T, ~ —T.,.
a>571nc n ¢ (8)

This condition is easy to check without implementing a global parallel GA by measuring
«a and T,. Since it is likely that 7, depends linearly on the size of the information to be
transmitted, we can substitute equation 5 in the previous inequality to obtain a more

specialized condition

a>Al+§C.
n
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This condition implies that for simple problems (with a short evaluation time) global parallel
GAs are not an option to reduce the execution time. But for problems with long execution
times global parallel GAs show a great improvement in performance. The next section
presents experiments using functions with different evaluation times and shows that the
theory presented here predicts the performance gains accurately.

4 Experiments

This section describes a particular master-slave implementation of global parallel GA on a
network of IBM RS6000 workstations. The workstations are connected with a 10 Mbits/sec
Ethernet and all communications are implemented using PVM 3.3. This is a rather slow
communications environment, so we do not expect any performance improvements when
simple test functions are used. For this reason we used first an artificial function that could
be altered easily to change its evaluation time («). We also experimented with a complex
neural network application that takes a very long time to evaluate.

The first problem is a dummy function that consists in a simple loop with a single
addition that can be repeated an arbitrary number of times. The length of the individuals
was set to 80 bytes and the population size to 120 individuals. The global parallel GA
was executed for 10 generations and the results reported are the average of 30 runs of the
elapsed time. We determined empirically that the communication time in our system could
be modeled as T, = 20 + 0.00526z (in milliseconds) where z is the size in bytes of the
message.

For the first experiment the evaluation time of the test function was set to 1.9 millisec-

onds. Using the analysis presented in the previous section we can calculate the optimal

number of slaves as S* = (A+a)" = % = 3.38. Figure 3 shows the elapsed

time per generation of the global parallel GA along with the theoretical prediction (using
equation 3). The first row of the table is the elapsed time that a serial GA takes to evaluate
the population. Note that the master-slave algorithm was faster than the serial GA only
when three slaves are used.

In the second experiment we changed the evaluation time of the test function to 3.8
milliseconds and the results for this experiment are shown in figure 4. For this experiment

the optimal number of slaves was S* = w = 4.78. We doubled the evaluation
time again for the third experiment (o = 7.6 ms) and the results are shown in figure 5. In
this case S* = 6.75 and therefore the optimal point does not appear in the experiments.
From these results we see that the theoretical time matches the experiments quite well and

that the optimum number of slaves is predicted accurately by equation 6.

The last experiment used a more complex evaluation function. It was an application
where the GA searched for the weights of the connections of a neural network with 13 inputs,
30 units in the hidden layer, and 5 outputs. The objective was to classify a set of 738 vectors
that represent sleep patterns into 5 classes. The evaluation function decoded the weights
from a string of 5150 bytes, tested each of the patterns, and calculated the percentage of
the classifications made correctly. On our computers each evaluation takes 3.85 seconds to
complete, which makes this problem an ideal candidate for the global parallelization method.
As we can see in figure 6 the total elapsed time decreased linearly with the number of slaves
because the time-used-in-communications was only a small fraction of the total time. In
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‘ Slaves ‘ Theory ‘ Exp. ‘

0 228 246
1 368 416
2 249 313
3 223 219
4 220 256
b} 226 266
6 237 276

Figure 3: Elapsed time (ms) per generation for the 1.9 milliseconds problem. The thick line
on the plot is the theoretical predictions and the thin line is the experimental results. On
the table, the numbers with the bold typeface are the minimum execution times.

Ti ne
500

450

400

350

300

i 5 3 i ¥ g Slaves

‘ Slaves ‘ Theory ‘ Exp. ‘

0 456 459
1 596 073
2 363 363
3 299 293
4 277 273
9 271 246
6 275 290

Figure 4: Elapsed time (ms) per generation for the 3.8 milliseconds problem.

Ti me

1000

800
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‘ Slaves ‘ Theory ‘ Exp. ‘

0 912 921
1 1053 1143
2 591 546
3 451 410
4 391 376
9 362 349
6 350 333

Figure 5: Elapsed time (ms) per generation for the 7.6 milliseconds problem.
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Ti me

4000 ‘ Slaves ‘ Theory ‘ Exp. ‘
3000 1 4620 | 4615
2 2310 | 2366
2000 3 1540 1654
1000 4 1156 1123
5 925 898
1 2 3 4 5 g Slaves 6 771 763

Figure 6: Elapsed times (sec) per generation for the NN problem.

fact, the communications overhead was so small that for this problem S* = 152 processors.

5 Hybrid parallel algorithms

The previous sections show that adding more slaves to a global parallel GA may improve the
performance greatly. However, the improvement is not infinite and after a certain optimal
number of slaves the performance will decrease as more processors are used. The question
that we face now is how should we employ other processors that might be available in a
constructive way?

This section explores the possibility of combining global GAs with coarse-grained parallel
GAs to achieve better performance than with any of the two methods alone. Coarse-grained
GAs are a different class of parallel GAs that have separate demes (or subpopulations) that
exchange individuals occasionally. It is possible to combine global GAs with coarse-grained
GAs to form a kind of hybrid-parallel GA (Canti-Paz, 1997). In this class of hybrid the
two methods of parallelizing GAs form a hierarchy with the coarse-grained algorithm at the
upper level (see figure 7).

The behavior of coarse-grained GAs is controlled by many variables and for this reason
their analysis presents many difficulties. However, the size of the demes (or subpopulations)
plays a major role as it is the principal factor in determining the quality of the final solution
and the time that the GA needs to find it. Recently, Canti-Paz and Goldberg (1997a)
developed a theory to determine the size of the demes that is needed to reach a solution of
a desired quality for two bounding cases of coarse-grained parallel GAs. The two bounding
cases are a set of isolated demes and a set of fully connected demes. In the case of the
connected demes the migration rate is set to the highest value possible.

Combining the deme-sizing models with a general model for the communications time Canti-
Paz and Goldberg (1997b) predicted the expected parallel speedups for the two bounding
cases. They reached two major conclusions from their analysis of coarse-grained GAs. First,
the speedup that is expected in the case where the demes execute in complete isolation is
not very significant. Second, in the case where the demes communicate, there is an optimal
number of demes (and an associated deme size) that maximizes the speedup (see figure 8).
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Figure 7: A schematic of a hybrid parallel GA. At the higher level this hybrid is a coarse-
grained parallel GA where each node is a global parallel GA.

The important lesson is that both coarse-grained and global parallel GAs have an opti-
mal number of processors after which the performance will be reduced. By using a hybrid
it is possible to use additional processors and reduce the execution time beyond the limits
of any of the two methods. Bianchini and Brown (1993) present an example of this hybrid
method and show experimentally that it can find solutions of the same quality of a global
parallel GA or a conventional coarse-grained GA in less time.

6 Summary and Conclusions

As GAs are applied to larger and more difficult search problems it becomes necessary to
design faster algorithms that retain the capability of finding acceptable solutions. Global
parallel GAs search the space in the same manner as a conventional GA and in consequence
retain all their advantages. Also, global GAs are easy to implement, but require a constant
exchange of individuals between the master and the slave processors. This communication
overhead reduces the performance gained by partitioning the computation load among sev-
eral processors. The analysis contained in this report shows that in realistic situations there
is an optimal number of slave processors that minimizes the execution time of the global
parallel GA. The analysis results in simple expressions that predict accurately the execution
time and the optimal number of slaves.

The analysis also shows a necessary condition for an increased performance in the parallel
case. The importance of this condition is that it is easy to evaluate without implementing
a global parallel GA. Simple tests to determine the cost of evaluating one individual and
the constants for the communications model are sufficient.

The existence of an optimal number of slaves limits the number of processors that can
be used to decrease the execution time. To overcome this limit, we propose to use a hybrid
GA with a coarse-grained parallel GA at the upper level and global GAs at the deme level.
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Figure 8: Projected and experimental speedups for test functions with 20 copies of a 4-bit
trap (left) and 8-bit trap (right) functions using from 1 to 16 fully connected demes. The
quality requirement was to find at least 16 copies correct. The thick lines are the theoretical
predictions and the thin lines are the experimental results.
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