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Designing E�cient Master-SlaveParallel Genetic AlgorithmsErick Cant�u-PazDepartment of Computer Science andIllinois Genetic Algorithms LaboratoryUniversity of Illinois at Urbana-Champaigncantupaz@illigal.ge.uiuc.eduAbstractA simple technique to reduce the execution time of genetic algorithms (GAs) isto divide the task of evaluating the population among several processors. This classof algorithms is called \global" parallel GAs because selection and mating considerthe entire population. Global parallel GAs are usually implemented as master-slaveprograms and require constant interprocessor communication. This will a�ect theirperformance, but most investigations of these algorithms ignore the penalty caused bycommunications. This paper presents an analysis of the execution time of global parallelGAs that includes a simple model of the time used in communications and shows thatthere is an optimal number of processors that minimizes the execution time. To furtherreduce the execution time we recommend the use of hybrids that combine global andcoarse-grained parallel GAs.
1 IntroductionA simple technique to parallelize genetic algorithms is to divide the task of evaluating thepopulation among several processors. In this technique selection and mating are global(i.e., they consider all the individuals in the population) and the resulting algorithm iscalled a \global" parallel GA. Global parallel GAs explore the search space in exactly thesame manner as a serial GA and are very easy to implement. However, there has beenlittle theoretical analysis to study the advantages that this method o�ers. The objective ofthis paper is to quantify the reduction in the execution time and to identify the necessaryconditions for an improvement in performance.The execution time of global parallel GAs has two major components: the time used incomputations and the time used to communicate information among processors. In turn,the computation time is largely determined by the size of the population (Goldberg & Deb,1991) so at �rst it seems that to improve performance we should reduce the population.However, the population size is also a major factor in the e�ectiveness of GAs and if thepopulation is reduced then the probability that the GA will �nd good solutions woulddecrease (Goldberg, Deb, & Clark, 1992; Harik, Cant�u-Paz, Goldberg, & Miller, 1997).1
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Master

SlavesFigure 1: A schematic of a global parallel GA.Global parallel GAs are usually implemented as master-slave programs. The time usedin communications depends directly on the number of slave processors and on the particularhardware used to execute the algorithm. The analysis in this paper assumes a simple butrealistic model for the communications time and it shows that there is an optimal numberof processors that minimizes the execution time of the global parallel GA.The next section of the paper presents background material on global parallel GAs.Section 3 gives a theoretical analysis of their performance that results in guidelines for thedesign of e�cient master-slave GAs. Section 4 shows the results from computational experi-ments that validate the theory. In section 5 the discussion turns to a method that combinesglobal and coarse-grained parallel GAs that promises a greater improvement in performancethan any of the two basic parallel methods alone. Finally, we present a summary with theconclusions of this study.2 Global parallel genetic algorithmsMany parallel programs are based on a divide-and-conquer principle that principle canbe applied to GAs in several ways. Indeed, the literature contains numerous examples ofdi�erent methods to parallelize GAs. This paper concentrates on global parallel geneticalgorithms that use one population and divide the task of evaluating the population amongseveral processors. Another popular method of parallelization is coarse-grained parallel GAswhich divide the population and execute a conventional GA on each of the subpopulations.Another method that also divides the population is �ne-grained parallel GAs, but in thiscase the subpopulations are much smaller than in the coarse-grained algorithm. It is alsopossible to combine these methods to produce hybrid parallel GAs and, as we shall see in alater section of this paper, they promise greater improvements in performance. A completereview of the di�erent methods of parallelization can be found elsewhere (Cant�u-Paz, 1997).It is important to emphasize that while the global parallelization method does nota�ect the behavior of the algorithm, the other methods introduce fundamental changes inthe way the GA works. For example, in the global method the selection mechanism takesinto account the entire population, but in the other methods selection is performed overa subset of individuals (the deme). Also, it is possible to mate with any individual in theglobal GA, but in the methods that divide the population mating is restricted to the deme.In global parallel GAs the most common operation that is parallelized is the evaluationof the individuals, because the �tness of an individual is independent from the rest of the2
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population and there is no need to communicate during this phase. The evaluation ofindividuals is parallelized by assigning a fraction of the population to each of the processorsused. Communication occurs only as each processor receives a subset of individuals toevaluate and when the processors return the �tness values.If the algorithm stops and waits to receive the �tness values for all the population beforeproceeding into the next generation, then the global parallel GA is called synchronous andit has exactly the same properties as a simple GA, with a possibility of better performancebeing the only di�erence. However, it is also possible to implement an asynchronousglobal GA where the algorithm does not stop to wait for any slow processors, but it doesnot work exactly like a simple GA (it resembles a GA with a generation gap). Most globalparallel GA implementations are synchronous and in the rest of the paper we assume thatglobal parallel GAs do the exact same search as simple GAs.The idea of global parallelization is not new. Actually, it has been around for quite sometime. For example Bethke (1976) described parallel implementations of a conventional GAand of a GA with a generation gap and showed a very detailed analysis of the e�ciency ofthe use of the processing capacity. His analysis showed that global parallel GAs have ane�ciency close to 100%, but his analysis ignores the overhead of communications.Another early study on global parallel GAs was made by Grefenstette (1981). He pro-posed four prototypes for parallel GAs. The �rst prototype is a global parallel GA wherethere is a \master" processor that does selection and applies crossover and mutation. Theindividuals are sent to \slave" processors to be evaluated and return to the master at the endof every generation. The second prototype is very similar to the �rst, but there is no cleardivision between generations, when any slave processor �nishes evaluating an individual itreturns it to the master and receives another individual. This scheme is an asynchronousglobal GA and can maintain a high level of processor utilization, even if the slave processorsoperate at di�erent speeds. The third prototype is also a global GA, but in this case thepopulation is stored in shared memory which can be accessed by the slaves independentlyof each other.Grefenstette's fourth prototype is a coarse-grained parallel GA where the best individ-uals are broadcast every generation to all the other processors. The complexity of coarse-grained parallel GAs was evident from this early proposal and Grefenstette raised several\interesting questions" about the frequency of migration, the destination of the migrants(topology), and the e�ect of migration on preventing premature convergence.Grefenstette also hinted at the possibility of combining the fourth prototype with anyof the other three, creating a hybrid parallel GA. In section 5 we explore this possibility inmore detail.The global parallelization method does not require a particular computer architecture,and it can be implemented e�ciently on shared- and distributed-memory computers. On ashared-memory multiprocessor, the population can be stored in shared memory and eachprocessor could read a fraction of the population and write back the evaluation resultswithout any con
icts1. The number of individuals assigned to any processor can be constant,but in some cases (like in a multiuser environment where the utilization of processors is1We mean that there are no con
icts with other processors to access the same memory locations andthus no synchronization is required in this step, but there may be con
icts in the interconnection networkthat may slow the algorithm. 3
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variable) it may be necessary to balance the computational load among the processorsusing a dynamic scheduling algorithm (e.g., guided self-scheduling).On a distributed-memory computer, the population is stored in one processor. This\master" processor is be responsible for sending the individuals to the other processors(the \slaves") for evaluation, collecting the results, and applying the genetic operators toproduce the next generation. The di�erence with a shared-memory implementation is thatthe master has to send and receive messages explicitly. The time used in communicationsis similar in both cases and the discussion that follows assumes that the global parallel GAis implemented as a master-slave program on a distributed-memory machine.An example of global parallelization on a distributed-memory architecture is the workof Fogarty and Huang (1991). Their goal was to evolve a set of rules for a pole balancingapplication which takes a considerable time to simulate. They used a network of transputerswhich are microprocessors designed speci�cally for parallel computations. A transputer canconnect directly to only four transputers, and when there is a need to communicate withanother node in the network, all the intermediate transputers must receive and retransmitthe message. This causes an overhead in communications and to try to minimize it Fogartyand Huang connected the transputers in di�erent topologies, but they concluded that thecon�guration of the network did not make a signi�cant di�erence. They obtained reasonablespeedups and identi�ed the fast-growing communication overhead as an impediment forfurther improvements in speed.Abramson and Abela (1992) implemented a GA on a shared-memory computer (anEncore Multimax with 16 processors) to search for e�cient timetables for schools. Theyreported limited speedups, and blamed a few sections of serial code on the critical path of theprogram for the results. Later, Abramson, Mills, and Perkins (1993) added a distributed-memory machine (a Fujitsu AP1000 with 128 processors) to the experiments, changed theapplication to train timetables, and modi�ed the code. This time, they reported signi�cant(and almost identical) speedups for up to 16 processors on the two computers, but thespeedups degraded signi�cantly as more processors were used, mainly due to the increasein communications.Another implementation of a global GA was the work by Hauser and M�anner (1994).They used three di�erent parallel computers, but only got good speedups on a NERVmultiprocessor (speedup of 5 using 6 processors), that has a very low communicationsoverhead. They explained that they did not get good speedups on the other systems theyused (a SparcServer and a KSR1) because they did not have complete control over thescheduling of computation threads to processors and the system sometimes made inadequatedecisions.Besides the evaluation of individuals, other aspect of GAs that can be parallelized isthe application of the search operators. For example, recombination and mutation could beparallelized using the same idea of partitioning the population and distributing the workamong multiple processors. However, these operators are so simple that it is very likely thatthe time required to send individuals back and forth would o�set any performance gains.The communication overhead is also a problem when selection is parallelized becauseseveral forms of selection need information about the entire population and thus requiresome communication. Recently, Branke, Andersen, and Schmeck (1997) parallelized di�er-ent types of global selection on a 2-D grid of processors and showed that their algorithms4
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Figure 2: A schematic the execution of a global parallel GA.are optimal for the topology of the interconnection network of the computer that they used(their algorithms require O(pn) time steps on a pn�pn grid).In conclusion, global parallel GAs are easy to implement and seem to be a very e�cientmethod of parallelization when the evaluation needs considerable computations. In the nextsection we formalize this notion and examine how the overhead from the communicationsa�ects the performance of this type of algorithms.3 AnalysisThe analysis of the execution time of global parallel GAs centers on the master processor.Figure 2 shows a timeline with the sequence of steps taken by the master. First, on eachgeneration the master sends a fraction of the population to each of the slave processors usingtime Tc and waits for the results to come back from the slaves. The slaves begin evaluatingtheir portion of the population as soon as they receive it and return it to the master as soonas they �nish. When the results are ready the master receives them, using time Tc again.At the end of each cycle the master selects the parents for the next generation and createsthe new individuals using crossover and mutation. The time used in these operations isassumed to be small constant and for this reason its contribution to the total executiontime is ignored in this section.The time that the master processor is idle can be computed by taking the di�erencebetween the time when the �rst slave completes its task (Tc + Tcomp) and the time whenthe master �nishes sending the population to the slaves (STc). Simplifying terms the idletime for the master is idle = Tcomp � (S � 1)Tc: (1)where Tcomp is the time used by each slave to evaluate its part of the population and S isthe number of slave processors.Since the population is divided into equally-sized parts among the slaves, the time thatthey spend in computation is simply Tcomp = n�S ; (2)where � is the time required to evaluate one individual and n is the size of the population.5



www.manaraa.com

Now we can compute the the total execution time of the master processor asTtot = 2STc + idle = n�S + (S + 1)Tc: (3)From this equation for the total time, it is evident that as more slaves are used thecomputation time decreases, but at the same time, the communications time increases. Thistradeo� entails the existence of an optimal number of slaves that minimizes the executiontime. Making @Ttot@S = 0 and solving for S results inS� = rn�Tc : (4)However, this last equation assumes that Tc is constant with respect to the numberof slaves. More often the cost of exchanging information between two processors dependslinearly on the amount of information, and in our case the amount of information dependson the number of slaves. Therefore a better expression for Tc isTc = Asize + C; (5)where A and C are hardware-dependent constants. C is a �xed overhead cost associatedwith any communication and in our case size = nl=S is the size of the n=S individuals sentto each slave when each individual is represented with l bytes.Using this linear model for the communications time also results in a tradeo� and theoptimal number of slaves can be computed in the same manner as before resulting inS� = s(A+ �)nC : (6)An important consideration in implementing global parallel GAs is that the frequentcommunication may o�set any gains in computation time. The time that a simple GA usesin one generation is Ts = n� and to ensure that the parallel implementation has a betterperformance than a simple GA the following relationship must hold:TsTtot = n�n�S + (S + 1)Tc > 1: (7)This ratio is the parallel speedup of the global parallel GA. Solving for � results in anecessary condition for better performance in the parallel case:� > S + 1S � 1 SnTc � SnTc: (8)This condition is easy to check without implementing a global parallel GA by measuring� and Tc. Since it is likely that Tc depends linearly on the size of the information to betransmitted, we can substitute equation 5 in the previous inequality to obtain a morespecialized condition � > Al + SnC:6
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This condition implies that for simple problems (with a short evaluation time) global parallelGAs are not an option to reduce the execution time. But for problems with long executiontimes global parallel GAs show a great improvement in performance. The next sectionpresents experiments using functions with di�erent evaluation times and shows that thetheory presented here predicts the performance gains accurately.4 ExperimentsThis section describes a particular master-slave implementation of global parallel GA on anetwork of IBM RS6000 workstations. The workstations are connected with a 10 Mbits/secEthernet and all communications are implemented using PVM 3.3. This is a rather slowcommunications environment, so we do not expect any performance improvements whensimple test functions are used. For this reason we used �rst an arti�cial function that couldbe altered easily to change its evaluation time (�). We also experimented with a complexneural network application that takes a very long time to evaluate.The �rst problem is a dummy function that consists in a simple loop with a singleaddition that can be repeated an arbitrary number of times. The length of the individualswas set to 80 bytes and the population size to 120 individuals. The global parallel GAwas executed for 10 generations and the results reported are the average of 30 runs of theelapsed time. We determined empirically that the communication time in our system couldbe modeled as Tc = 20 + 0:00526x (in milliseconds) where x is the size in bytes of themessage.For the �rst experiment the evaluation time of the test function was set to 1.9 millisec-onds. Using the analysis presented in the previous section we can calculate the optimalnumber of slaves as S� = q (A+�)nC = q (1:90526)12020 = 3:38: Figure 3 shows the elapsedtime per generation of the global parallel GA along with the theoretical prediction (usingequation 3). The �rst row of the table is the elapsed time that a serial GA takes to evaluatethe population. Note that the master-slave algorithm was faster than the serial GA onlywhen three slaves are used.In the second experiment we changed the evaluation time of the test function to 3.8milliseconds and the results for this experiment are shown in �gure 4. For this experimentthe optimal number of slaves was S� = q (3:80526)12020 = 4:78: We doubled the evaluationtime again for the third experiment (� = 7:6 ms) and the results are shown in �gure 5. Inthis case S� = 6:75 and therefore the optimal point does not appear in the experiments.From these results we see that the theoretical time matches the experiments quite well andthat the optimum number of slaves is predicted accurately by equation 6.The last experiment used a more complex evaluation function. It was an applicationwhere the GA searched for the weights of the connections of a neural network with 13 inputs,30 units in the hidden layer, and 5 outputs. The objective was to classify a set of 738 vectorsthat represent sleep patterns into 5 classes. The evaluation function decoded the weightsfrom a string of 5150 bytes, tested each of the patterns, and calculated the percentage ofthe classi�cations made correctly. On our computers each evaluation takes 3.85 seconds tocomplete, which makes this problem an ideal candidate for the global parallelizationmethod.As we can see in �gure 6 the total elapsed time decreased linearly with the number of slavesbecause the time used in communications was only a small fraction of the total time. In7
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350

400

Time Slaves Theory Exp.0 228 2461 368 4162 249 3133 223 2194 220 2565 226 2666 237 276Figure 3: Elapsed time (ms) per generation for the 1.9 milliseconds problem. The thick lineon the plot is the theoretical predictions and the thin line is the experimental results. Onthe table, the numbers with the bold typeface are the minimum execution times.
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Time Slaves Theory Exp.0 456 4591 596 5732 363 3633 299 2934 277 2735 271 2466 275 290Figure 4: Elapsed time (ms) per generation for the 3.8 milliseconds problem.
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Time Slaves Theory Exp.0 912 9211 1053 11432 591 5463 451 4104 391 3765 362 3496 350 333Figure 5: Elapsed time (ms) per generation for the 7.6 milliseconds problem.8
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Time Slaves Theory Exp.1 4620 46152 2310 23663 1540 16544 1156 11235 925 8986 771 763Figure 6: Elapsed times (sec) per generation for the NN problem.fact, the communications overhead was so small that for this problem S� = 152 processors.5 Hybrid parallel algorithmsThe previous sections show that adding more slaves to a global parallel GA may improve theperformance greatly. However, the improvement is not in�nite and after a certain optimalnumber of slaves the performance will decrease as more processors are used. The questionthat we face now is how should we employ other processors that might be available in aconstructive way?This section explores the possibility of combining global GAs with coarse-grained parallelGAs to achieve better performance than with any of the two methods alone. Coarse-grainedGAs are a di�erent class of parallel GAs that have separate demes (or subpopulations) thatexchange individuals occasionally. It is possible to combine global GAs with coarse-grainedGAs to form a kind of hybrid-parallel GA (Cant�u-Paz, 1997). In this class of hybrid thetwo methods of parallelizing GAs form a hierarchy with the coarse-grained algorithm at theupper level (see �gure 7).The behavior of coarse-grained GAs is controlled by many variables and for this reasontheir analysis presents many di�culties. However, the size of the demes (or subpopulations)plays a major role as it is the principal factor in determining the quality of the �nal solutionand the time that the GA needs to �nd it. Recently, Cant�u-Paz and Goldberg (1997a)developed a theory to determine the size of the demes that is needed to reach a solution ofa desired quality for two bounding cases of coarse-grained parallel GAs. The two boundingcases are a set of isolated demes and a set of fully connected demes. In the case of theconnected demes the migration rate is set to the highest value possible.Combining the deme-sizing models with a general model for the communications time Cant�u-Paz and Goldberg (1997b) predicted the expected parallel speedups for the two boundingcases. They reached two major conclusions from their analysis of coarse-grained GAs. First,the speedup that is expected in the case where the demes execute in complete isolation isnot very signi�cant. Second, in the case where the demes communicate, there is an optimalnumber of demes (and an associated deme size) that maximizes the speedup (see �gure 8).9
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Figure 7: A schematic of a hybrid parallel GA. At the higher level this hybrid is a coarse-grained parallel GA where each node is a global parallel GA.The important lesson is that both coarse-grained and global parallel GAs have an opti-mal number of processors after which the performance will be reduced. By using a hybridit is possible to use additional processors and reduce the execution time beyond the limitsof any of the two methods. Bianchini and Brown (1993) present an example of this hybridmethod and show experimentally that it can �nd solutions of the same quality of a globalparallel GA or a conventional coarse-grained GA in less time.6 Summary and ConclusionsAs GAs are applied to larger and more di�cult search problems it becomes necessary todesign faster algorithms that retain the capability of �nding acceptable solutions. Globalparallel GAs search the space in the same manner as a conventional GA and in consequenceretain all their advantages. Also, global GAs are easy to implement, but require a constantexchange of individuals between the master and the slave processors. This communicationoverhead reduces the performance gained by partitioning the computation load among sev-eral processors. The analysis contained in this report shows that in realistic situations thereis an optimal number of slave processors that minimizes the execution time of the globalparallel GA. The analysis results in simple expressions that predict accurately the executiontime and the optimal number of slaves.The analysis also shows a necessary condition for an increased performance in the parallelcase. The importance of this condition is that it is easy to evaluate without implementinga global parallel GA. Simple tests to determine the cost of evaluating one individual andthe constants for the communications model are su�cient.The existence of an optimal number of slaves limits the number of processors that canbe used to decrease the execution time. To overcome this limit, we propose to use a hybridGA with a coarse-grained parallel GA at the upper level and global GAs at the deme level.10
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